

EC625 (UNS NO6625) NICKEL-BASED HIGH PERFORMANCE ALLOY

Electralloy's EC625 is a solution strengthened, Nickel-base, high performance alloy providing excellent resistance to both high temperature gaseous corrosion and aqueous corrosion, coupled with good strength and stress rupture properties up to 1800°F (982°C).

CHEMICAL COMPOSITION (Nominal Analysis, weight percent)

Carbon (max)	0.10	Columbium	3.15 / 4.15
Manganese (max)	0.50	Aluminum (max)	0.40
Silicon (max)	0.50	Titanium (max)	0.40
Chromium	20.00/23.00	Iron (max)	5.00
Molybdenum	8.00 / 10.00	Nickel (min)	58.00
Phosphorus (max)	0.015	Sulfur (max)	0.015

TYPICAL APPLICATIONS

Because of its unique balance of chromium, molybdenum, and columbium, Electralloy's **EC625** is used in a wide variety of applications. **EC625** exhibits excellent high temperature strength and oxidation resistance making it a prime choice for many gas turbine applications and furnace components. Good resistance to chloride pitting, crevice corrosion, and chloride stress corrosion cracking make it an excellent candidate for many seawater applications including Navy Nuclear propulsion systems. Additionally it finds widespread use in flue gas scrubbers and sour gas well applications where it resists the most severe conditions with virtually no attack.

EC625 can be supplied to meet all the requirements of the following specifications, and more...

AMS 5666

ASTM B446

ASTM B564

MIL-N-24687

NACE MR0175

EC625 is available in a wide variety of sizes and forms, including ingot, billet, bar, and coil rod.

The information and data contained in this Product Data sheet are intended for general information and do not constitute any warranty, expressed or implied, of suitability for any applications or design

EC625 (UNS NO6625) NICKEL-BASED HIGH PERFORMANCE ALLOY

PHYSICAL PROPERTIES

Melting Temper	ature:	2350°F to 2460°f (1290°C to 1350°C				
Density:		0.305 lb/in³ (8.44 gm/cm				
Specific Heat:		(70 to 212	F) 0.098 Btu/lb*of			
Magnetic Permeability:		(H=200 Oersteds) < 1.0				
Coefficient of Th	ermal Expansion	<u> </u>				
Tempe	erature					
oF.	°C	μ/in./∘F	μ/m/°C			
-400 to 70	-240 to 21	5.0	9.0			
70 to 400	21 to 204	7.3	13.2			
70 to 1200	21 to 649	8.4	15.1			
70 to 1800	21 to 982	9.6	17.3			
Thermal Condu	ctivity					
Temp	erature					
٥F	∘C	Btu/Ft*hr*oF	W/m*K			
-200	-129	4.3	7.5			
70	21	5.7	9.8			
1000	538	10.1	17.4			
1800	982	14.6	25.2			
Electrical Resist	ivity					
Temp	erature	Resistivity				
»F	°C	ohm/circ mil/ft	microhm-m			
70	21	776	1.29			
	1.000000	87 YEAR TO THE REAL TO THE REA				

Modulus of Ela	asticity	/ (E)
----------------	----------	-------

400

1200

1800

Temperature		Tension		Shear		Poisson's
oF	∘C	10¹ksi	MPa	10 ⁴ ksi	MPa	Ratio
70	21	29.8	206	11.4	79	0.308
400	204	28.4	196	10.8	75	0.312
1200	649	24.4	168	9.2	63	0.328
1800	982	18.7	129	- 6	*	3.65

806

830

812

1.34

1.38

1.35

204

649

982

HEAT TREATMENT

EC625 is usually used in the solution treated condition, typically consisting of uniform heating to the 1600°F to 2000°F (870°C - 1095°C) temperature range. Specific mechanical properties depend upon solution treat temperature. While 625 is not normally aged to increase strength, exposure in the 1100°F to 1350°F (595°C - 735°C) range will precipitate a coherent Ni₃Cb (γ) phase which increases strength and decreases ductility and toughness.

TYPICAL MINIMUM MECHANICAL PROPERTIES

Test 1	Temp.	U	TS	1	/S	EL
۰F	°C	ksi	MPa	ksi	MPa	96
70	21	120	827	60	414	30
600	316	90	621	42	290	30

The information and data contained in this Product Data sheet are intended for general information and do not constitute any warranty, expressed or implied, of suitability for any applications or design.

HOT WORKING

Recommended hot working temperature range for this alloy is 2150°F down to 1850°F (1175°C - 1010°C).

CORROSION & OXIDATION RESISTANCE

Although originally designed for high temperature applications, the high chromium and molybdenum content of the alloy make it extremely corrosion resistant, even in the most severe environments. High molybdenum makes it virtually unaffected by pitting and crevice corrosion in chloride environments (seawater). Electralloy's EC625 has excellent oxidation resistance in both long term and cyclic operations. The alloy is highly resistant to scale loss and spalling at temperatures up to 1800°F (980°C).

WELDING

EC625 is weldable using most fusion techniques; gas shielded arcs, using tungsten or consumable electrodes are recommended. Various resistance welding methods can also be used.

MACHINING

The alloy can be machined using techniques and equipment similar to 300 series stainless. However, because of the alloy's high strength and high work hardening rate, set-ups must be rigid and "overpowered". Lower feeds and speeds are required, and carbide tooling is recommended. Relatively deep, constant feeds must be maintained to prevent work hardening which causes low tool life and breakage.

2-2019